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ABSTRACT

Three methods of defining optimality of statistical decision
rules are introduced. The first uses ideas of approximation
theory by defining the optimal decision as that element of the
risk set which best approximates an ideal rule. The second
optimality principle defines optimality in terms of minimizing
functionals. The third method is the axiomatization of optimality

in statistical decision theory.




MATHEMATICAL MODELS FOR STATISTICAL DECISION THEORY
Bernard Harris

1. Introduction. In the typical problem of statistical inference, the
statistician is confronted with the problem of selecting one out of the vast
number of possible decision rules. I will refer to this as the "fundamental
problem of statistics". In this survey paper, I will try to give some mathe-
matical characterizations of the problem of selecting an optimal decision pro-
cedure. This will not constitute a resolution of the “fundamental problem”,
inasmuch as this {s intimately tied up with irresolvable philosophical dif-
ficulties. These arise, since in all but a few exceptional problems, there is
no single procedure which can be regarded as uniformly dominating all other
possible procedures. As a consequence, "reasonable people" have disagreed
and will continue to disagree on the specific procedure that should be selected.

Despite all of the above difficulties, a great deal can still be done to
formalize statistical decision theory. Thus, inwhat follows, I willgive some
characterizations of optimality in statistical inference. The discussion will
of necessity be brief and is intended only to provide an introduction to these
characterizations. More extensive treatments are in preparation and will appear
subsequently.

The objective here will be to provide a mathematical structure in

which the details of the original problem are replaced by abstract mathematical
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statements which retain those features common to large classes of problems.
This enables us to isolate those aspects of decision theory which are relevant
to the selection of a single decision rule.

For the most part, this paper does not really contain new mathematical
results; instead it is largely concerned with the adaptation of known mathe-
matical results to statistical problems.

Specifically, I will describe three ways of providing a mathematical
model for statistical decision theory. The first is motivated by comparatively
recent ideas of approximation theory. The second is obtained by representing
the statistical problem as an optimization problem. The third approach is a

discussion of some possible axiomatizations of statistical decision theory.

2. Preliminaries. Let & and G be topological spaces; 6 and a will be
used to denote generic elements of these spaces. Let L(g,a) be a mapping
from € XG into the reals. We will assume throughout that L{(f,a) is uni-
formly bounded from below; that is, there exists a real number M >0, such
that L(6,a)>-M forall 2ee, aeG. Itiscustomary toreferto ® as the
parameter space, 4 as the space of actions, and L as the loss function.
We also require a probability space (X, 31, Pe), where X is a space of
elements x and By is a o -algebra of subsets of 1, and PO’ 0 ¢ © 1is one
of a family of probability measures on aI indexed by © .

An experiment is conducted and the random variable X is observed.

X 1is assumed to take values in X and is distributed by P where 8 is

91

an element of & whose value is unknown to the statistician.
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We can now outline the steps in a statistical problem. The statistician

observes the event X = x, xe L; then given the family of measures P6 R

but not the value of #, he selects ae¢ G and is assessed the penalty
L(g,a) . Thus, the objective is to choose a so that L(6,a) is "kept small";
ideally, if there exists a, such that L(6, ao) = min L(6, a), then one should

aed

choose a, - However, it is obvious that in order to be able to choose a

0
0’
in general, one would need to know which parameter 8 ¢ & prevailed. Since
X is distributed by P,, the event X = x contains information about 8, hence
the chcice of ae¢ G should generally depend on the outcome of the experiment.
Thus, given the outcome of the experiment, a mapping §: X+ G is chosen.
Since X is a random variable, 6(X) is a random variable, provided that §
is a measurable mapping. We denote the set of such measurable mappings
by 8§ .

In repetitions of the experiment, X will change; hence, unless
8(X) is almost surely constant, L(f, 6(X)) will va:v. Thus, the average loss,
Ee L(0, (X)) is used as a criterion for choosing & rather than the loss in
any given experiment. We call l:‘.6 L(A, &(X)) the risk function (of §) and
denote it by RG(G) = R(6, §) . Note that our assumptions (5 measurable and
L(6, a) uniformily bounded from below) insure that RG(G) "exists" for each
@; it may however, be +»

1t is desirable to augment # by introducing the "mixed" or “random-
fzed" decision procedures &, whose elements will be denoted by ¢ . To

do this, we introduce a ¢-algebra % Py and let & be the set of all probability

#1160 -3.




distributions on %& . Of necessity %s must include each {5}, 6¢ &,
so that 8C @, by using distributions such that P{6§} =1 . We will refer
to the elements of & as decision rules or decision procedures; when it is
necessary to specifically identify an element of @ as being in 8, we will
refer to it as a pure decision rule.

Clearly, if R(8, ) is ﬁs measurable for each 4,
R,(6) = RO, 9) = [ R, 6)dp(5)
8

is well-defined. We call R(p(e), as defined above, the risk function of ¢ .
Then, the problem of selecting a decision procedure becomes the problem of
selecting ¢ ¢ & so that R(8,¢) is kept "small".

Let S = {R¢(9), @€ &} and let T be the mapping defined by
T: & -~ S, thatis T(¢) = R(p(e) . Werefer to S as the risk set.

If for Pp @, € &, we have R(B,(pl) = R(B, ¢2) for all 6 ¢e, then 2

2
and ¢, are said to be equivalent. Thus, the elements of S are equivalence
classes of elements of & . Consequently, we can replace the problem of
selecting ¢ ¢ ® with the equivalent problem of selecting an element se S.
Then we can choose any element of T-l(s) as the decision procedure to be
employed.

In order to simplify notation, we will adopt the following conventions

in the material that follows. For S)s s, ¢ S, 8 < s, means T_l(sl) =

’

R(8, ¢pl) < R(Bz, q)z) = T'l(sz) for all 6 e ® and for some 90 €0

-1
R(OO, <pl) < R(Go,rpz); here 9 is any element of T (sl) and ?y is any
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element of T-l(sz) . Similarly, 5 < s2 means R(6, ¢1) < R(8, ¢2) for all

6e €.
In particular, we will say that 5 € S is inadmissible (and all
Q€ T-l (sl) are inadmissible) if there is an Sg € S with N < s - If there

is no such s then s,, equivalently any ¢ ¢ T'l(sl), will be said to be

0’ r
admissible.
Clearly, if s, < S, then sz should not be employed by the statistician.
Further, if there is an So such that 50 <s, forall se S; then 5, is to

be chusen and there is no problem of selection. This is, unfortunately, an
exceptional situation. In most problems, an ordering of this type is not
available among the decision rules being considered; it is quite customary to
find oneseif with the problem of selecting one of a large set of mutually in-
comparable rules.

Note that S is of necessity a convex set. To see this, observe that
® 1is a convex set. Then let 9y = wl +(1- )\)tpz, op @, € o, \e [0,1].

Then

R _(8) = | R(8,8)d[(he, +(1-N\)0,)(5)]
o<l e,

f& R(9, 6)[Ade,(8) + rde,(5)]

AR (8) + (I-\) R_ (6)

1 2

Since T is a linear mapping, we have that if
so = T(¢0) ’

#1160 -5.




then

s, = xsl +(1-2) S, s

where
s = T(wl), SZ = T(wz)

However, as S has been defined, it is not necessarily the convex hull of
T(8), denoted by co(T(8)) . To see this, let 8 = {-0 <5<} .

©={-0w<H6<w} and

That is, T(®) 1is the set of all degenerate cumulative distribution functions.
It 1s easily seen that co(T(8)) is the set of all cumulative distribution
functions with a finite number of jumps. However, S is the set of all cumu-
lative distribution functions on (-, )

In the discussion that follows, the "classical" decision criteria
known as the minimax criterion, minimax regret criterion, and Laplace's
criterion will be used repeatedly as illustrations. For the sake of complete-
ness, they are defined below. Each of these corresponds to a different in-

terpretation of what might be meant by "keeping RW(O) small".

(1). The minimax criterion. Choose Qg € ® so that sup R¢ 6) <
] 0
sup R (8) forall o¢ @
p ¢
(2). The minimax regret criterion. Choose @0 € ® so that
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sup[R (8) - inf R _(6)] < sup{R () -inf R (6)]
8 % yed Y 9 ¢ yed

forall pe &

(3). Laplace's criterion. Choose g € & so that
R (6 < 6)d
J R, (6)dpu(e) < [ R (6)dule)
e 0 e

for all ¢ e®, where p is the uniform measure on @ . (If ® is a compact

subset of En, for example, f R¢(e)dp(e) is well-defined. In more general
e

situations, some modifications to this definition may be required).

In each of the three cases above s the "optimal" element of s,

07

is defined by s = T(v’o)

0

Each of these reflects adifferent interpretation of "keeping Rw(e)
small", in ignorance of the value of 6 . The minimax criterion guarantees
that the largest value of R‘P(G) is as small as possible. The minimax regret
criterion identifies inf R (6), the lower envelope function, as the smallest
loss that you could "i’relcd:xr if you knew 0; hence R (A) - inf R (8) is the
additional loss that is incurred by one'signorance of 6 Y G'I:len you seek to
make the maximum of this difference as small as possible. In Laplace's
criterion, the philosophy is one of keeping the "average loss" small rather
than the maximum — as is the case with minimax and minimax regret.
Average is here identified with the uniform measure on @

Historically, there have been two approaches employed in studying the

question of what might be meant by a "best" se¢ S . They are
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(1) Specify a criterion, then deduce its properties and see if they
are satisfactory.
(2) List the properties that you would like a decision procedure to
possess, then determine the existence and construction of
decision rules meeting the required conditions.
In what follows, the third and fourth sections will follow the first approach
and the fifth section will use the last approach.
For additional material on the above definitions and concepts, the
reader is referred to standard treatises on decision theory, such as D. Blackwell
and M. A. Girshick [2], T. S. Ferguson [11], and A. Wald [30].

3. Approximation theory and statistical decision theory

Let £ be a normed linear space of real-valued functions of 6, 6 ¢ © ;
for xe £ we denote the norm of X by I =)l I When there is no danger
of confusion concerning the space under consideration, the subscript &
will be deleted. Let S£ be a convex set in £ and let v be a distinguished
point in £.

We say that s, ¢ S.\'. is a best approximation to v if || so -v|| < " s -v||

0

forall se S g The existence and determination of So is a well-known
problem in approximation theory and there is a considerable literature about
this topic. A few of the more significant of these results are summarized
below. If we add the additional assumption that v<s forall se Sx ,

then, we will show that the notion of a best approximation to v is a possible

interpretation of the concept of optimality in statistical decision theory.
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Consequently, the theorems of this part of approximation theory frequently
hav.: a natural reinterpretation in a statistical context.

For general discussions of properties of convex sets in normed linear
spaces, the reader is referred to F. A. Valentine [29] and N. Dunford and
J. T. Schwartz, Chapter V, [ 9]. The theory of best approximations by
elements of convex sets is discussed in the book by I. Singer [26], (in
particular see Appendix I) and in papers by F. R. Deutsch and P. H. Maserick
[8], A. L. Garkavi 12,13}, V. N. Burov [3,4], and G. S. Rubinstein [23], to
name a few.

We denote a hyperplane H in £ as a set of the form
H={xeg:Lx) =c}

%
where Le¢ £, the adjoint spaceof £, L+ 0, and ¢ is areal scalar.
Then, the best approximation in SJ: to v can be characterized by

the following theorems, which will be stated here without proofs.

Theorem 3.1 (I. Singer [26], F. R. Deutsch and P. H. Maserick{8 ]). Let
8 P) be a convex set in £, a normed linear space, and let ve é.:t’ the
complement of Sz . Then, there exists an S € Ss which is a best ap-
proximation to v if and only if there exists a linear functional Le.i'.* with

@ =1,

’

(2) L(so) =inf L(s) ,
Se¢ S'c

(3) Lisy-v) = sy -vll .

#1160 -9.



Geometrically, this says that a point N in S ) is a best approximation

to ve S: if and only if there is a hyperplane H separating v from Ss s

which supports S, at s and whose distance from v is the distance from

£ 0’
v to s0 .
Secondly, we have the following characterization of a best approxima-

tion.

Theorem 3.2 (A. L. Garkavi [13]). Let S g be a convex set in the normed
) is the best approximation to ve S; if and

%
there is a linear functional Ls in £ such that

linear cpace £. Then Sg € S
only if for each s e Sz

L3
(1) Ls is an extreme point of the closed unit ball in £ ,
(2) Lo(s-55)20 ,

(3) L (sy-V) = Isg - vl .

We now turn to the connection between the best approximation problem
described above and optimality in statistical decision theory.

Let S be the risk set of a statistical decision problem and let £ be
a normed linear space. Let S£= sNg={ses, | s"£ <o } . We say that

s, € S Is (v, £) optimal if for v<s, forall se S.\‘.’ s. 1is the best

0 0

approximation to v from S.t . If Sg is empty, then we define every se S
as (v, £) optimal.

It remains to be shown that this is in fact a reasonable definition of
optimality for statistical decision problems. We will try to justify this

in two steps. First, we will show that minimax, minimax regret, and
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Laplace's criterion are (v, £) optimal procedures for particular choices of
v and £ . Second, having established that this is in fact a generalization
of these "classical" decision criteria, we will give an intuitive interpreta-
tion of the notion of (v, £) optimality as a family of decision criteria. We
will make the simplifying assumption that € is compact. Modifications to
some definitions will be needed, when this is not the case, and can easily
be made. However, these will be omitted here, since they do not serve
the immediate purpose of this exposition.

Let v=v(8) = -M, 8¢ & . Then, if we take £ to be the space of
bounded functions f(6), 6 ¢ & with ||f||£= s:p |f(9)| . Then, the best
approximation to v from S, thatis, the (v,5 optimal decision rule for
this case is the minimax decision procedurz. Note that our hypotheses
insure v<s forall se¢ S

Now employ the same choice of v and let £ be the space of p -
integrable functionsof 8, where p is the uniform measure on € . Here
the (v, £) optimal decision rule is Laplace's criterion.

To obtain the identification of minimax regret as a (v, £) optimal de-
cision procedure, we define v =v(8) = inf R (6), the lower envelope
function. Clearly v<s, forall se Sw.t Q’rhen the same choice of £ as in
the representation of the minimax criterion provides the representation of the
minimax regret criterion.

Hence, it is evident that this notion ot optimality is a generalization

of some of the familiar notions of optimality.

#1160 -11-




We now give an intuitive interpretation of (v, £} optimality as a
statistical optimality criterion. The statistician should interpret v as the
"{deal” decision rule, that is, what he would like to be able to accomplish,
such as in the case of "perfect information”. The distance from v to S
reflects his inability to accomplish this ideal as a consequence of uncertainty.
Since v in general is not attainable, the suggestion is to choose that element
of S which comes as close as possible to the ideal v, hence, "a best
approximation to v".

To clarify these ideas, consider the following simple example. We
consider a decision theoretic model for the problem of testing a simple hypothesis

against a simple alternative. Thus © = (91, 92) and G = (al, az) .

Let
91 6
a1 0 1
L6, a) =
a 1 0

Then the risk set is the set (a«” ptp), corresponding to the probabilities of
errors of the first and second kind using the decisionrule ¢¢ @ . A typical

risk set for such a problem is shown below.
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Here it appears natural to set v = (0,0), which corresponds to a
"perfect" test, that is, one with size zero and power unity. The different
choices of £ correspond to different ways of defining the point in S which
is closest to (0,0) .

We now return to Theorems 3.1 and 3.2 to reexamine them in the light of
statistical decision theory, rather than approximation theory. TIirst note that
the only significant distinction in the conversion to the statistical problem is
the additional assumption v <s . This readily leads to the following, which

we state as Theorem 3. 3.

Theorem 3.3. Let 8‘: be a convex set in £, a normed linear space and
let v<s, forall se S‘t . Then, 89 is a best approximation to v if and

only if there exists a positive linear functional L ¢ r,* satisfying conditions
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(1), (2) and (3) of Theorem 3.1. Similarly, so is a best approximation to v
if and only if for each s e Sg, there is a positive linear functional Ls in
.t* satisfying conditions (1), (2) and (3) of Theorem 3. 2.

Some of the more immediate consequences, for example, include the
following well-known result in statistical decision theory. If all the risk
functions in S ¢ are continuous and S ¢? 4, then the space £ determined by
the sup norm coincides with .tw space, say if € C En . The adjoint space
is £l space and the positive linear functionals of norm unity are then the
probability distributions on €, using the usual Borel o-algebra on @ . Then
the linear functional L of Theorem 3.1 is the least favorable distribution (for
either minimax or minimax regret, depending on the choice of v from the two
alternatives specified earlier). In a less restrictive context, the linear func-
tional L of Theorem 3.1, gives a prior distribution against which s0 is
Bayes, provided one adds a few minor regularity conditions. Statistical in-
terpretations of Theorem 3.2 are not as useful, although these can be inferred

as well.

4. Opimization in statistical decision theory defined by minimizing functionals

In this section we introduce another method of defining optimization in
statistical decision problems.

Let ¥ be a class of extended real valued functionals h on a linear
topological space M of real valued functions of 6, 6 ¢ ©, with the following

properties:
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1) h(0) =0, |h(-M)l<w, where -M denotes the function
fle)=M, 6co.

(2) If x<vy, h(x) <h(y)

Then we say that 8¢ ¢ SCMh is h-optimal if h(so) < h(s) for all seS.
If h(s) =+ forall se¢ S, thenevery se¢ S is said to be h-optimal.
Since every norm is a functional, h-optimality reduces to (v, £)

optimality in some particular instances. That is, if h(s) = Is- vns, when

"s . vnt <o and h(s) = », otherwise, then this is precisely (v, £) optimality.

However, there are many instances of h-optimality which are not expressible
in terms of norms, and hence, this is in fact a generalization of (v, £) op-
timality.

It is instructive to examine the principle of Bayesian inference in the
light of the definition of h-optimality. Let p be a probability measure
(equivalently any measure g with p(8)< ) on the Borel sets of € . Then

So is the Bayes decision rule with respect to p if

(4.1 J R, (0)p®) < [ R_(6)du(8)
e %o e ¢

for all o¢ & and 8 = T(¢0) . Note that we need the additional assumption
that R¢(6) is measurable with respect to the Borel o-algebra on & for every
oed

Observe that (4.1) is a statement of minimization with respect to a linear

functional. Since, as a consequence of the Riesz representation theorem,
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every positive linear functional has a representation of the form employed in
(4.1) for compact ©, Bayesian inference coincides in this case with h-optim-
ality for linear h .

This observation provides an obvious explanation for the assertion that
the solution to a Bayesian problem is obtained more easily than the solution
using other criteria. Namely, in the sense employed here, Bayesian problems,
are linear problems, that is, minimization with respect to linear functionals.
Other optimization orinciples are generally non-linear in this sense.

We can relate this principle to a growing body of mathematical literature
as well by noting that this is precisely the structure of mathematical pro-
gramming problems. The function h becomes the objective function of the
mathematical programmer and the convex set S is the set of feasible points.
Hence Bayesian inference is linear programming from this point of view.
However, the set of constraints required to generate S need not necessarily
be finite. The general optimization problem is, in general, a problem of
non-linear programming in an arbitrary linear space.

Some useful work in this area which can be exploited by statisticians
are J. W. Dantel {6, 7 ], K. Kirch§assner and K. Ritter [15 ], K. Ritter [22],
and L. W. Neustadt [19 ]. In particular, it should be noted that some re-
lationships between mathematical programmingand the areas of statistics and
probability are quite we!l-known. An extensive discussion of these and a

substantial bibliography may be found in the survey paper by O. Krafft [16 ].
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5. Axiomatizations of optimality in statistical decision theory. Another method

of defining optimality in statistical decision problems is to list properties that
you would like such a procedure to possess. I will briefly summarize the
history of this topic and conclude with the statement of some recent results
by E. E. Nordbrock and some of their consequences.

In H. Chernoff [ 5 ], a set of eight postulates is exhibited for a finite
decision problem (8, 8 both finite). For these postulates, Laplace's criterion
is the only rule which satisfies all eight. Chernoff notes that if an additional
postulate were added to the list; a postulate of the "nature duplication" type
to be discussed below, then a contradiction would result. Chernoff's results
"justifying" Laplace's criterion were extended to more general decision problems
by H. Uzawa [27,28]-

In J. Milnor [18 ], a list of ten postulates for a finite decision problem are given.
Subsets of these which characterize Laplace's criterion, minimax, and minimax
regret are exhibited. It should be noted that minimax regret was proposed by
L. J. savage in [24,25], and is referred to as Savage's criterion by Milnor.
Milnor also exhibited a set of eight postulates which are consistent and gave a
construction of a rule which satisfies these postulates. His rule is a precursor
of the rule used by Atkinson, Church, and Harris[l], which will be discussed in
greater detail later. Good [14 ], proposed a restricted type of minimax rule.

The thirteenth chapter of R. D. Luce and H. Raiffa [17 ] and the paper of
R. Radner and J. Mérschak [21 ] provide expository treatments of decision

principles.
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In Atkinson, Church, and Harris, the following set of postulates were
proposed for the finite decision problem @ = {91, cee On} and 8= {dl’ d,,
N dm}; here S is a convex polyhedron in En and is the convex hull of

the row vectors of the matrix A = {a11 }, where a, = L(di’ 61)

i
l. The optimal class Q(A) is non-empty.

2. Let ™ and ™ be permutations actingon © and # respectively.

Then if A’ = {aij} = {a ) ] }, Q(A') is the set of points of S obtained by

m (D7)
applying LAY to the coorziinatgs of points in Q(A) .
3. Every element of Q(A) is admissible.

4. Q(A) is a convex subset of S.

~ -
€€y e O
C €y v Cf

5. If A=A +| . , A>0 ,
c,C, ... C
12 n_|J

then Q(A) = (x + ;, X e Q(Ao)}, where ¢ = (Cpp €y -eey € )
6. Let co(A'lr) = co(Ag), where AT is the transpose of A and co(A)
is the convex hull of the row vectors of A . If Al is obtained from AZ by
deleting j columns from Az, then Q(Al) is obtained from Q(Az) by deleting
the corresponding j coordinates from each element of Q(AZ)
Remark: This type of postulate is usually called a "nature duplication"
postulate.
7. If for two statistical decision problems, A1 and Az, with risk sets

S1 and Sz, the points of S1 which are both extreme points and admissible
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coincide with the points of S2 which are both extreme points and admissible,
then Q(Al) = Q(AZ) .
00
8. If {An}n=1 converges to A, and x € Q(An) for every n, then

o0
every limit point of {xn}

ne] 18 in Q(Ao) . (Here convergence of {An} is

element by element).

In[ 1 ], it was exhibited that these postulates are consistent for finite
decision problems and a decision rule called "iterated minimax regret" (IMR)
was shown to satisfy all eight postulates. IMR is closely related to the rule
given by Milnor [18] and is described below.

The iterated minimax regret principle (IMR) selects any element Sg € S

as optimal which is obtained by the following process.

Let v = vl(e) = inf R¢(9) and let £ be the normed linear space with,

@
for s=T(¢), llsll=/IR (8)]] = supr (0) . Let z =inf ||s-v || andlet {¢ }°° be a
4 ee D ses ! n’n=l
sequence of positive numbers with 1lim e = 0. Let Q1 = 8 and inductively,
n--o

for n>1, define Q = {se Q: "s-v ||< z_ +¢_z } where v_=inf R_(0)
- n+l n n —-"n n’l n -l¢
peT (Sn)

and z = inf |Is -V . 1f 2 = o, then all se¢ S are said to be optimal.

se S o0 1

1f z) <o, défine Q= ﬁl Qn and choose as s, any element of Q .
n=

0
B. Efron [10] extended these results in part to infinite decision problems.
Here some modifications in the postulates must be made and these are listed

below in the form given by E. E. Nordbrock [20].

2'. If h: 8 - @' is a homeomorphismandif S' = {R'¢(9'); 6'e0'; R =

R +h}, then Q'=Q-h
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5'. If 8' = \S +c, where c =c(0) is a continuous function of 8 ,
then Q' =AQ +c¢

6'. Let S'= {R¢(9')} and S = {R‘p(e) = Rle}, where R|e means the
restriction of the domain of R to ©® and eC ©' . Then if for every 90 €0,
there is a probability measure p.eo on © such that for all ¢ ¢ &, we have
R (6,) = fe R¢(e)dp90(e), then Q'le = Q.

7' If S end S' have a common complete class, then Q = Q'

8' Define d(S, 8') = max {sup inf "r-s", sup iInf fr-sl} .
seS reS' reS'seS

Then if d(S_, S)=~ 0 as n-—® and if ¢ Q, forall n, and if
d(s(n), s)—~ 0, then se Q.

Efron showed that these postulates (1, 2', 3, 4, 5', 6', 7', 8') are satisfied
by IMR for S a closed bounded convex set in En . He also claimed that
with the exception of postulate 1 and the weakening of the conclusion of
postulate 8 to s e 6, this holds for closed bounded convex sets in Lw .
However, the following counter example shows that inadmissible decision
procedures may result.

Example 5.1 Nordbrock [20]. Let = {l,2,...} andlet 8#={0,1,2, ...} .

For 6=1,2, ..., let.
R6(9)=
and let

Ro(e) =1 forall 6ee
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Let S be the closed convex hull of {Rb(e)} . Then it is easily seen that
o0
N Q =Q,=8 and s, = R (8) is inadmissible.
n=1 n 1 0 0
We now conclude with a statement of Nordbrock's results.
S is said to be weak intrinsically compact (Wald[30]), if for every
sequence {sn}e S, there is a subsequence {sn } and an s'e S such that
k

lim inf R (@) > R'(6) for all 8, where s =R _ (0) and s' = R'(6)
n = n, n,

Theorem 5.1. IMR satisfies properties 2', 4, 5', 6' generally. Propertyl
holds if S is weak intrinsically compact. Property 8 holds if S is closed

and properties 3 and 7 hold if S is compact.

6. Summary. In this exposition, I have attempted to give some illustrations
of the possible directions in which the mathematical foundations of statistical
decision theory might be developed. The limitations of this volume preclude
the extensive development of these ideas which are necessary in order to de-
termine its possible impact on the subject of theoretical statistics. However,
it is hoped that this brief exposition will encourage research workers to further
examine the implications of the ideas contained herein. At this stage it is not
yet apparent whether the material of sections three and four will in fact produce
new basic results in statistics as such. To date, it is possible to identify
many familiar statistical results in the writings of functional analysts and
further display the correspondence between these two areas. The notion of
iterated minimax regret developed in the fifth section is handicapped by its
apparent incomputability, except in rather artificial examples. The principle
has not been successfully applied to any concrete statistical problem as yet.

#1160 -21-



The author is indebted to Professor Herman Chernoff for some discussions
concerning his paper [5] and for calling the two papers by H. Uzawa [27, 28]

to his attention.
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